https://gospodarkainnowacje.pl

Volume: 36 | 2023 Economy and Innovation ISSN: 2545-0573

For more information contact: editor@gospodarkainnowacje.pl

ШИРИНА ЗАПРЕЩЕННОЙ ЗОНЫ НАНОКРИСТАЛЛОВ NISI2 СОЗДАННЫХ В ПРИПОВЕРХНОСТНОЙ ОБЛАСТИ SI, ПОЛУЧЕННЫЕ МЕТОДАМИ ИОННОЙ ИМПЛАНТАЦИИ

Мустафаева Нилуфар Мойли кизи

Каршинского инженерно - экономический институт

Шукуров Бекзод Ўктам ўғли

Каршинского института ирригации и агротехнологий, safirayanilufar@gmail.com

A R T I C L E I N F O.	Аннотация
Ключевие слова: Запрещенно, Методами Ионной.	В работе имплантацией ионов Ni+ a Si в сочетании с отжигом в приповерхностном слое Si на глубине 15-25 nm получены нанокристаллические фазы и слои NiSi2 . при D=8*1016 см-3 формировалась наноплёночная гетероструктура типа Si/NiSi2/Si. Вперые оценены ширины запрешенных зон нанокристаллических фаз и слоев NiSi2 , созданных в приповерхностной области Si.
	http://www.gospodarkainnowacje.pl/ © 2023 LWAB.

Многослойные нанолпеночные МДП и ПДП – структуры на основе Si имеют большие перспективы в создании сверхвысокочастотных транзисторов, интегральных схем, сенсоров, детекторов излучения, электронных и магнито-запоминающих устройств [1-5]. В последнее годы для создания наноразмерных гетероструктур часто используется метод низкоэнергетической ионной имплантации и на основе Si получены системы типа MeSi₂/Si, SiO₂/Si, CoSi₂/Si/CoSi₂/Si [6-8]. При создании этих структур после кажлого цикла ионной имплантации проводился отжиг при температуре образования соединения MeSi₂ и SiO₂. Определены оптимальные режимы ионной имплантации (энергия, доза) и отжига. В частности в получение двухслойной системы CoSi₂/Si/CoSi₂/Si оптимальными являлись энергии $E_0=20-30$ и 0,5-2 keV [8].

Данная работа посвящена получению нанокристалическая фаз и слоев NiSi₂ в приповерхностной области Si и определению их параметров зон.

Методика эксперимента

Объектами исследования являлись монокристаллическое образцы Si(111). Нано кристаллические фазы и сплошные слои NiSi₂ в приповерхностном слое монокристаллического Si с вариацией энергии E₀ от 15 до 30 keV и дозы от 10^{14} см⁻² с последующим отжигом при температуре формирования монокристаллического NiSi₂. Перед ионной имплантацией образцы обезгаживались в условиях сверхвысокого вакуума (10^{-6} Pa) при T \approx 1100 K. при этом поверхностная концентрация кислорода уменьшатся до 0,5 at.%, а углерода – до 1-2 at.%. Исследования проводились с использованием методом оже-электронной спектроскопии (ОЭС), и измерением зависимости интенсивности *I* проходящего через образец света от энергии

Kielce: Laboratorium Wiedzy Artur Borcuch

Copyright © 2023 All rights reserved International Journal for Gospodarka i Innowacje This work licensed under a Creative Commons Attribution 4.0 фотонов. При снятии зависимости I(hv) использовалось световое излучение с длиной волны λ =6200-800 nm (энергия квантов 0,2-1,5 eV). Поверхностный диаметр ионно-имплантированного участка составлял ~1,5-2, mm, а диаметр светового луча, падающего на поверхность ~ 0,5-0,6 mm. Профили распределения атомов по глубине определялись методом ОЭС в сочетании с травлением поверхности ионами Ar⁺ с энергией 3 keV, пр угле падения80-85⁰ относительно нормали.

Экспериментальные резултаты и их обсуждения

Основные исследования проводились для Si имплантированного ионами Ni⁺ с энергией E₀=25 keV. Для исследования были подготовлены 5 одинаковых, хорошо обезгаженных образцов Si(111). Эти обрацы имплантировались ионами Ni⁺ с E₀=25 keV при дозами D, см⁻²; 0 (чистый Si, образец №1), $2 \cdot 10^{14}$ (№2); $2 \cdot 10^{15}$ (№3) и $8 \cdot 10^{15}$ (№4) и $8 \cdot 10^{16}$ (№5). Последная доза соответствует дозе насыщения. Результате ОЭС показали, что во всех случаях постимплантационый отжиг при температурах T=800 (образец №2), 850 (№3) и 900 К (№4 и №5) приводит к формированию эпитаксиальных нанокристаллических фаз (№2 и №3) и нанослоя (№5) NiSi₂. При этом толщины нанофазы NiSi₂ (образец №3) и нанослоя NiSi₂ (№5) мало отличаются друг от друга и составляет ~10-12 нм (рис 1).

Рис.1. Профили распределения Ni по глубине Si(111), имплантированного ионами Ni⁺ с $E_0=25$ keV при дозе D=8·10¹⁶ см⁻³ и подвергнутого прогреву при T=900 K в течение 1 часа.

По-видимому до дозы D $\approx 10^{15}$ см⁻² нанокристаллические фазы NiSi₂ формируются в виде сфер [8], а при D>10¹⁵ см⁻² переходят в форму близкую к эллипсоиду и при D=8·10¹⁶ см⁻² образуется сплошной однородный слой NiSi₂ (рис. 2).

Kielce: Laboratorium Wiedzy Artur Borcuch

Copyright © 2023 All rights reserved International Journal for Gospodarka i Innowacje This work licensed under a Creative Commons Attribution 4.0

Рис.2. Схематические изображения нанофаз (1-3) и нанослоя (4) NiSi₂ расположенных ы приповерхностном слое Si. 1-D=2·10¹⁴ см⁻² ; 2-2·10¹⁵ см⁻² ; 3-8·10¹⁵ см⁻² ; 4-8·10¹⁶ см⁻² .

Расчеты показали, что объем нанокристаллической фазы NiSi₂ для образца №3 составляет (1-1,2)·10⁻¹⁸ см³, а для образца №4 - (3-3,5)·10⁻¹⁸ см³. Средняя глубина формирования наноструктур лежит в приповерхностных слоях 20-22 нм.

Таким образом впервые методом имплантации ионов Ni⁺ в Si с энергией 15-30 keV а сочетание с прогревом в приповерхностной области Si получены наноразмерные структуры NiSi₂. Ширина запрещенной зоны нанокристалических фаз с ростом их размеров от $(1-1,2)\cdot 10^{-18}$ см⁻³ до (3-3,5)·10⁻¹⁸ см⁻³ изменялась в пределах от 0,7 до 0,9 eV. При дозе D≈8·10¹⁶ см⁻² образуется наноразмерная система типа *Si/NiSi₂/Si*. Показано, что Eg нанослоев NiSi₂ равна ~0,58 eV.

Список литературы

- 1. Colinge J.P. // Material Research Society Proceedings. 1985. V. 35. P. 653. http://dx.doi.org/doi 10.1557/ PROC-35-653.
- 2. Алтухов А.А., Жирнов В.В. Анализ морфологии и стехиометрии пленок CoSi/Si(100), полученных методами ТФЭ и РЭ // Материалы II-го Всесоюзного межотраслевого совещания "Тонкие пленки в электронике": Москва-Ижевск. 1991. С. 15-22.
- Умирзаков Б.Е., Ташмухамедова Д.А., Рузибаева М.К., Ташатов А.К., Донаев С.Б., //ЖТФ. 2013. Т.83. Вып..9.С.146-149 [Umirzakov B.E., Tashmukhamedova D.A., Ruzibaeva M.K., Tashatov A.K., Donayev S.B., Mavlyanov B.B. // Technical Physics. 2013. 58(9), c. 1383-1386].
- 4. Tashmukhamedova D.A., Umirzakov B.E., Mirzhalilova M.A. //Izvestiya Akademii Nauk. Ser. Fizicheskaya. 2004. 68 (3), c.424-427.
- 5. Эргашов Ё.С., Умирзаков Б. Е. //ЖТФ. 2018, Т.83.№2 С.1859-1862

Kielce: Laboratorium Wiedzy Artur Borcuch